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Nature Guiding Theory
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Nature Guiding Theory

Two approaches
( ature = 3|mp||cﬂy, qgesthetics

= need mere” deas for solution to

ot standlng theory issues

(2) “Nature” = experiments, reality

= need to find a BSM clue in LHC data
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|. Strategy for unanticipated
new physics

ll. Deep networks for NP searches




Searching for new physics
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Traditional approach
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Bet on a specific theory
Optimize analysis to squeeze out maximal sensitivity to new physics.
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Model independent search
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Discard the model
compare data to standard model
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Pythia j : 50.4% “Never listen to theorists.
Just go look for it.”
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Compromise

= Madel o
S < > 2

)
(g- Search™Sfrategy S

Admit the need for a model
New signal requires a coherent physical explanation,
even trivial or effective

Generalize your model

Construct simple models that describe classes of new physics which can be
discovered at the LHC.

What are we good at discovering?
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Admit the need for a model
New signal requires a coherent physical explanation,
even trivial or effective

Generalize your model

Construct simple models that describe classes of new physics which can be
discovered at the LHC.

What are we good at discovering? Resonances!
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s this being done?
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What about this?
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Easy-to-find resonances
may exist in our data and
nobody has looked!
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Topological models
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Systematically Searching for New Resonances
at the Energy Frontier using Topological Models

Mohammad Abdullah,! Eric Albin,! Anthony DiFranzo,! Meghan Frate,! Craig Pitcher,! Chase
Shimmin,! Suneet Upadhyay,! James Walker,! Pierce Weatherly,! Patrick J. Fox,2 and Daniel Whiteson®

! Department of Physics and Astronomy, University of California, Irvine, CA 92697
2Fermi National Accelerator Laboratory, Batavia, IL 60615

We propose a new strategy to systematically search for new physics processes in particle collisions
at the energy frontier. An examination of all possible topologies which give identifiable resonant
features in a specific final state leads to a tractable number of ‘topological models’ per final state and
gives specific guidance for their discovery. Using one specific final state, ££57, as an example, we find
that the number of possibilities is reasonable and reveals simple, but as-yet-unexplored, topologies
which contain significant discovery potential. propose analysis techniques and estimate the
sensitivity for pp collisions with /s = 14 TeV an a =300 fb~ 1.




Topological models

For a given final state (eg lljj) construct
all models with resonances. Then look for them!
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Connections to EFT, Simp. Models
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mji = mw or mz mi = mz

What about other values?
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|. Strategy for unanticipated
new physics

Il. Deep networks for NP searches
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How to find NP

|Isolate some

2 Standard Model
feature in which s SM+X
¢ i_h . - ® Collider Data
wo theories 2

=
SM, SM+X 3
can be best >
distinguished.

some feature

The data can tell us which hypothesis is preferred via a likelihood ratio:
Loprox P(data | SM+X)

Loy P(data | SM)




ATLAS ® Data
——— Sig+Bkg Fit (m =126.5 GeV)
-------- Bkg (4th order polynomial)
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Reality is more
complicated.

The full space can be
very high dimensional.

Calculating likelihood in
d-dimensional space

requires ~ 1009 MC events.

Standard Model
X

feature 2

feature 1
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feature 2

ML tools

Standard Model
X

Neural networks
can learn these
shapes in high-dim
and summarize
in a 1D output

density

feature 1

o Classifier output




Neural Networks

Essentially a functional fit with many parameters

Hidden

Function
Each neuron’s output
is a function of the
weighted sum of inputs.

Godl
find set of weights

which give most useful function

Learning
give examples, back-propagate
error to adjust weights




Neural Networks

Essentially a functional fit with many parameters

Hidden

Problem:
Networks with > 1 layer are
very difficult to train.

Consequence:
Networks are not good
at learning non-linear functions.
(like invariant masses!)

In short:
Can’t just throw 4-vectors at NN.
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Search for Input

ATLAS-CONF-2013-108

Can’t just use 4v

Can’t give it too
many inputs

Painstaking search
through input
feature space.

Variable

VBF

TlepTlep  TlepThad

Thad Thad

Boosted

TlepTlep  TlepThad

Thad Thad

—  MMC

m,

AR(T,T)

An(j, j2)

mj i,

M), X1,

Total

Py

sum pr

pr(T1)/pr(r2)

ET™ ¢ centrality

Xy and xpp

Mer, iy

me. is

A&( 2

sphericity

Py

Py

E?’i”,’p{{

mr

min(Any, ¢, jets)

Jj3 7 centrality

£) X £ i centrality

£ i centrality

712 7 centrality

Table 3: Discriminating variables used for each channel and category. The filled circles identify which
variables are used in cach decay mode. Note that variables such as AR(7, 7) are defined either between
the two leptons, between the lepton and 1,4, Or between the two 7,4 candidates, depending on the decay

mode. 30




Search for Input

ATLAS-CONF-2013-108
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Table 3: Discriminating variables used for each channel and category. The filled circles identify which
variables are used in cach decay mode. Note that variables such as AR(7, 7) are defined either between
the two leptons, between the lepton and 1,4, Or between the two 7,4 candidates, depending on the decay
mode. 31
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Real world applications

(g)

Head turn: DeepFace uses a 3-D model to rotate faces, virtually, so that they face the camera. Image (a)
shows the original image, and (g) shows the final, corrected version.
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Paper

Deep Learning in High-Energy Physics: Improving the Search for Exotic Particles

P. Baldi,! P. Sadowski,’ and D. Whiteson?

IDept. of Computer Science, UC Irvine, Irvine, CA 92617
?Dept. of Physics and Astronomy, UC Irvine, Irvine, CA 92617

arXiv: 1402.4735

Accepted in Nature Comm.
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Benchmark problem

Signal

automatically discover
useful variables?

: @66666 a 0\< 5 Can deep networks
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Background
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4-vector inputs

21 Low-level vars
jettlepton mom. (3x5) T /& ™| T
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4-vector inputs

/ High-level vars
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-vector inputs
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Results

Adding hi-level
boosts performance
Better: lo+hi-level.

Conclude:

NN can’t find

hi-level vars.

Hi-level vars
do not have all info




Standard NNs
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Networks
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Results

Lo+hi = lo.

Conclude:

DN can find

hi-level vars.

Hi-level vars
do not have all info
are unnecessary




Deep Networks
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Conclude:

DN does better
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assisted NN
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|dentified example benchmark where traditional
NN fail to discover all discrimination power.

Adding human insight helps traditional NNs.

Deep networks succeed without human insight.
Outperform human-boosted traditional NNs.
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DN not as

reliant on signal
features. Cuts into
background space.

Fraction of Events
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